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Simulation results for the First AIAA Sonic Boom Prediction Workshop are presented

using an inviscid, embedded-boundary Cartesian mesh method. The method employs

adjoint-based error estimation and adaptive meshing to automatically determine resolu-

tion requirements for each simulation. Results are presented for both mandatory and

optional test cases. These include a low-boom body of revolution, a 69

�
delta wing model

and a model of the Lockheed supersonic tri-jet with V-tail and flow-through nacelles. In

addition to signature data, each example includes an assessment of mesh independence of

the near- and mid-field pressure signatures. We also show mesh convergence of the adapta-

tion functional and demonstrate that both the adjoint correction and remaining error are

vanishing as the mesh is refined. Data provided include both the pressure signals required

by the workshop and information on code performance in terms of processing time and

memory usage. In addition, the discussion demonstrates useful techniques for prediction

of extreme o↵-track pressure signatures and an adjoint-based technique for tracing features

of the o↵-body pressure signature back to specific portions of the geometry and flow field.

Nomenclature

h Altitude above sensor at model nose/apex
J Scalar functional or output of interest
L Reference length

h/L Non-dimensional distance to sensor
p Local static pressure

M Mach number
Q State vector of conserved variables
wi Weight of ith component of the functional, Ji

↵ Angle of attack
� Sideslip angle
� O↵-track angle (“On-track” at � = 0�)
� Standard deviation

R(·) Residual of the discretization
(·)H Values on mesh with cell size H
(·)1 Free stream conditions

I. Introduction

Analysis methods for sonic-boom prediction have improved dramatically in recent years as a result
of both commercial and government interest in overland supersonic flight. Backed by programmatic

investment within NASA and the aerospace community, a number of simulation tools have recently become
available for predicting high-fidelity pressure signals several body lengths away from an aircraft.1–11 At
such distances, details of the three-dimensional aircraft geometry become less important and atmospheric
propagation codes12–14 then model wave propagation through the atmosphere and to the ground.

While several technologies have played roles in improving the e↵ectiveness of CFD-based analysis, one
of the keys has been the widespread use of adaptive mesh techniques.1–4,6, 7, 15–17 By design, low sonic-
boom vehicles send only weak pressure disturbances toward the ground. Accurate propagation of these weak
waves over several body lengths is a challenge for any numerical simulation technique. Adaptive meshing
techniques concentrate and orient mesh elements in the computational domain to more e�ciently propagate
these signals and have been far more successful than earlier e↵orts. Particularly noteworthy has been the
contribution of adjoint weighted or output-based meshing approaches, which can prioritize mesh refinement
specifically to reduce error in the propagated signal.3,4, 6, 16,18 The insight provided by these methods has
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benefitted even fixed-mesh approaches since they aid in our understanding of flow sensitivities, meshing
requirements and the role of discretization error throughout the flow field.

The objective of the first sonic-boom prediction workshop is to document the state of the art for predic-
tion of near-field pressure signatures and gain an understanding of modeling requirements for accurate and
reliable sonic boom prediction.19 To facilitate direct comparison, the workshop organizers provide both CAD
geometry as well as surface and volume grids for structured, unstructured (tetrahedral) and mixed-element
grids. Workshop participants were requested to apply their best practices for computing solution on the
provided geometries. In addition, there was particular interest in exploring refinement techniques including
grid adaptation and alignment with flow characteristics.

Although embedded-boundary Cartesian grids are used quite broadly within the low-boom design com-
munity, Cartesian meshes were not included in the grid-sets provided by the organizing committee. Cartesian
methods have been of interest since at least the 2008 NASA Fundamental Aeronautics Low Boom Work-
shop20 and many of the specialized techniques commonly used for such computations were pioneered on these
grids.4 While Cartesian grids were not distributed per se, surface representations (either CAD or unstruc-
tured surface triangulations) were included, and these provided the geometric models for this work. Meshes
used in this work were chosen to roughly correspond to the resolution levels provided for other simulation
techniques considered by the workshop organizers for the various problems.

II. Background and Numerical Method

In early 2008, Nemec, Aftosmis and Wintzer3 used embedded-boundary Cartesian meshing along with
adjoint-based mesh adaptation to predict the pressure signature generated by a diamond airfoil in supersonic
flow. This work used an o↵-body functional to drive the adjoint and introduced a mesh alignment technique
based on the Mach-angle of the free-stream flow. The capability was built upon a preexisting mesh adaptation
scheme and adjoint solver.21,22 Three dimensional examples using the Cartesian-adjoint approach for boom
prediction were presented in June 20084 and the method was subsequently used to participate in the 2008
NASA Fundamental Aeronautics Program Sonic Boom Prediction Workshop.20

The Cart3D simulation package uses a Cartesian cut-cell approach23 in which the Euler equations are
discretized on a multilevel Cartesian mesh with embedded boundaries. The mesh consists of regular Cartesian
hexahedra everywhere, except for a layer of body-intersecting cells at boundaries as illustrated in Figure 2.
The spatial discretization uses a second-order accurate finite volume method with a weak imposition of
boundary conditions, resulting in a system of equations with the form

R(QH) = 0 (1)

Figure 1. Multilevel Cartesian mesh
with a cut-cell boundary.

where R(·) is the residual operator of the discretization and QH is
the state vector on the current mesh.

The flux-vector splitting approach of van Leer24 is used for resid-
ual evaluation. Although the mesh consists of nested Cartesian cells,
it is viewed as an unstructured collection of control volumes mak-
ing the approach well-suited for solution-adaptive mesh refinement.
Steady-state flow solutions are obtained using a five-stage Runge–
Kutta scheme with local time stepping and multigrid. Domain de-
composition via space-filling curves permits parallel computation; for
more details see Aftosmis et al. and Berger et al.

25–27

When applied to boom propagation problems, the Cartesian mesh
is frequently rotated to roughly align the mesh cells with the free
stream Mach-wave angle. This alignment also enables cell stretching
along the dominant wave propagation direction to directly increase
the per-cell signal propagation distance. Details of these techniques
are discussed in Wintzer et al.4

In 2005, a duality-preserving discrete adjoint approach was introduced for Cart3D.22 This solver shares
the same basic data structures, domain decomposition and other infrastructure with the primal solver and
achieves similar performance. While originally developed for gradient-based shape optimization,28 the adjoint
method was also employed for output error-estimation and adaptive mesh refinement29 using an approach
similar to that of others in the literature.30–33 This method was first applied directly to boom-propagation
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problems in Ref. [3], where we introduced an o↵-body field functional written as a pressure sensor in quadratic
form.

J =
Z L

0

(p� p1)2

p1
dl (2)

Figure 2. Cylindrical coordinates used for sonic boom.

Integration of this functional is performed along a
sensor of length L placed in the field where the sig-
nature is measured. With this functional output,
the adjoint-based error-estimation then tailors the
mesh refinement to reduce the error in the pres-
sure signature at the location of the sensor. Error
in this signal can be either driven below some pre-
specified value, or alternatively, reduced as much
as possible using a worst-errors-first strategy until
a desired mesh size is reached. Adaptation is per-
formed incrementally by cycling between the primal
and adjoint solvers, with no more than one level of
cell refinement being performed at a time. With
this strategy, a typical adaptive simulation costs 3-
5 times that of a single flow solution on the final
mesh.

By convention, a cylindrical coordinate system is used for sonic boom analysis. The longitudinal coor-
dinate x runs axially, and h is the radial coordinate. The azimuthal angle, �, measures the angle o↵-track,
and � = 0� is referred to as “on-track”.

III. Workshop Results and Investigations

Simulations for the workshop focus on the prediction of near and mid-field pressure signatures for three
geometries in supersonic flow. The first two are compulsory while the third is optional. Figure 3 shows a
composite image of all three models for reference. The simplest model is a low-boom body of revolution
used for instrument and tunnel calibration during testing in 2012 in the NASA Ames 9⇥ 7 ft. Supersonic

Figure 3. Models for the 1st AIAA Sonic Boom Prediction Workshop. (Left) Axisymmetric Seeb-ALR model.
(Center) 69� delta-wing-body. (Right) Lockheed Martin LM1021 Concept. Rendering of discrete geometry.
Models not to relative scale.
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L = 17.667 in

(a)

(b)

(c)

Shown to scale

(a)

(b)
(c)

Axial scale compressed 5 x

Figure 4. Details of the axisymmetric Seeb-ALR geometry. (Upper) Model shown to scale. (Lower) Model
shown with compressed axial scale to highlight regions of curvature. Frames (a), (b), and (c) highlight surface
meshing and geometric curvature near the nose, shoulder and rear of the model.

Wind Tunnel. Two winged configurations are also examined. The first is a 69� delta-wing-body shown in
the center of Figure 3. This model was originally tested in the same tunnel in 1973,34 and recently re-tested
in preparation for the workshop.35,36 The final configuration was the most geometrically complex. This was
an optional test case examining signature prediction for a complete lifting supersonic transport configuration
with flow-through nacelles. This geometry was developed by Lockheed Martin as part of a design study of
next-generation configurations for the NASA Fundamental Aeronautics Program’s High-Speed Project.37,38
The workshop provided both surface triangulations and CAD geometry for all three models. Required
submission data included on-track and o↵-track pressure signatures as well as complete boom-carpets at
mid-field locations up to 4.6 body-lengths away from the models.

A. Case 1 – Seeb-ALR

A.1. Seeb-ALR: Geometry

The axisymmetric Seeb-ALR model was constructed by Lockheed Martin and was tested in the NASA
Ames 9⇥ 7 ft. Supersonic Tunnel in 2012.37,38 The model is a body of revolution based upon the work
of Darden, George and Seebass.39,40 Figure 4 shows various views of this geometry. The “ALR” moniker
denotes “Aft Lift Relaxation” which is a design feature that increases the diameter of the geometry slightly
to reach a maximum just aft of the shoulder, and then tapers slightly to meet the cylindrical sting extension.
Traditional Seeb designs transition monotonically to cylindrical aft-bodies. A reference length of L=17.667 in.
was specified for the workshopa and the body reaches its maximum diameter of ⇠1.43 in. around 15.6 in. from
the tip. The cylindrical sting has a diameter of 1.395 in. which begins 17.678 in. downstream of the tip. The
sting was tapered to a point far downstream in the simulations.

The workshop provided various representations of the Seeb-ALR geometry including surface triangula-
tions, structured surface grids and solid models in both Parasolid and STEP formats. The surface meshes
and CAD files represent the “as-built” geometry and were generated by measurement of the actual test arti-
cle after manufacture.38 The tessellation shown in Figure 4 was generated directly from the Parasolid CAD
representation and was crosschecked with the unstructured discrete representation. The final tessellation
contains ⇠254 k triangles with good curvature alignment and typical aspect ratios between 2 and 5. Figure 4
shows details of this triangulation near the tip, shoulder and aft cylindrical junction. A scale view of the
geometry is shown at the top of this figure with the geometry ahead of the cylindrical portion colored. The

aThis value is given as 17.678 in. in Ref. [38]
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lower frames show the geometry using a compressed axial scale to highlight the change in radius along the
axial dimension. Frames (a), (b), and (c) show details of the surface triangulation at the nose, shoulder and
aft sections. Close inspection of the nose reveals that while the manufactured model is slope-continuous, the
profile has subtle inflection points, and the axial-curvature briefly changes sign about 1.8 in. downstream of
the tip. Frame (c) shows details of the cylindrical juncture. Neither solid model had a CAD edge defining
this feature. As a result, all the surface triangulations had relatively poor representations of this transition.

A.2. Seeb-ALR: Meshing

Figure 5 shows symmetry plane views of the computational mesh and computed isobars from the final
simulation. Following the methods outlined in Refs. [3] & [4], the mesh was rotated to roughly the Mach
angle of the free stream flow, and the cells were stretched roughly 2:1 along the dominant direction of
wave propagation. This figure also shows the locations of pressure sensors at h = 21.2 in. and h = 42.0 in.
directly on-track (� = 0�). The objective of this case was to obtain accurate o↵-body signatures at the
sensors. Therefore, the adaptation was driven using a simple functional comprised of the weighted sum of
the pressure signals on the two sensors following eq. (2), with the signal at 42 in. receiving four times the
weight of that at 21.2 in. to account for the weaker signal at this distance. The starting mesh is shown on
the left (⇠25 k cells) and had a region of nearly uniform refinement covering both the geometry and sensor
locations. After 7 cycles of adaptive refinement, the cell count grew to 2.01 M cells as shown in the middle
image of Figure 5. The computed pressure signals along these sensors on the mesh shown were submitted
to the workshop. On the right, isobars in the discrete solution give a sense of the evolution of the pressure
signal between the body and the sensors. The color map is chosen so that white indicates free stream and
red and blue indicate higher and lower relative pressures. This shading makes apparent the quick change
from over-pressure to expansion emanating from the shoulder region of the geometry (see detail in frame
(b) of Figure 4). Note that the small glitch downstream of the Seeb-ALR geometry (faintly visible in the
isobars) is simply an artifact of the sting extension which happens to get picked up by the sensors and is
downstream of the region of interest.

A.3. Seeb-ALR: Mesh Convergence

While workshop results were submitted from the discrete solution after 7 cycles of adaptive refinement, two
additional refinements were performed to verify and quantify the degree of mesh convergence. Figures 6 &
7 present this evidence from three perspectives: convergence of the functional, convergence of the adjoint-
based error estimates and evolution of the pressure signal at the sensors. The frame at the left of Figure 6

Initial Mesh: 25 k cells Adapt 07: 2.0 M cells Isobars

h = 21.2 in.

h = 42.0  in.

Figure 5. Symmetry plane mesh and isobars in discrete solution for Mach 1.6 flow over the “as-built” Seeb-
ALR geometry at ↵ = 0�. Initial mesh contains ⇠25 k cells. Mesh after 7 cycles of adaptive refinement contains
2.01M cells.
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Figure 6. Mesh convergence for Seeb-ALR case. (Left) Convergence of the functional and adjoint correction.
(Right) Convergence of the adjoint-based error estimate and actual update to the functional, |�J |.

shows convergence of the output functional, J . Mesh convergence is achieved when this objective stops
changing with further refinement. The abscissa of this plot gives the number of cells and the symbols on the
curves correspond to adaptation cycles. Cycles 7, 8 and 9 are labeled. Since the functional is an integral of
pressure along the sensors, this plot shows that the simulation values along the extraction lines are becoming
increasingly independent of the mesh as we refine. On each mesh, the adjoint solution also provides a
correction to the functional based on a linearization about the current discrete solution.3 The corrected
functional is shown in green (circles) on this plot. As expected, the corrected functional leads the computed
objective by approximately one adaptation cycle, and the correction itself vanishes rapidly as the mesh is
refined.

At the right, Figure 6 shows error convergence as the mesh is adaptively refined. The plot tracks
convergence of both the estimate of the error-bound on J computed from the adjoint solution as well as the
actual change in the magnitude of the functional |�Jn| ⌘ |Jn �Jn+1| observed after each cycle of adaptive
refinement. In the Richardson region, the adjoint-based error estimate (blue) should decrease linearly on
a log–log plot. We observe this textbook behavior over the last five adaptation cycles. Despite the strong
non-linearities in the flow, the solution appears to be converging asymptotically giving a high degree of
confidence in the discrete solution on the final few meshes. Further confirmation is provided by the behavior
of |�J |, which is everywhere below the estimated error-bound, indicating that the update is well behaved,
and the bound is conservative. After 8 cycles of refinement the error-bound corresponds to about the height
of one symbol on the plot of functional convergence. The final update going from 8 to 9 (|�J8|) is about
two orders of magnitude smaller still. In production mode, the adaptation module does not solve the adjoint
on the finest mesh, so the final error estimate is for the “Adapt 8” mesh.

Figure 7 shows evolution of pressure signal at h = 21.2 in. and h = 42.0 in. over the final few adaptation
cycles. These both show that the solution is essentially unchanging – as expected from the convergence of
the functional and error estimates already presented. While we do observe some sharpening of the highest
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h = 42.0
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h = 21.2
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h = 21.2

Figure 7. Convergence of the o↵-body pressure signature with mesh refinement for Seeb-ALR at h = 21.2 in.
(left) and h = 42.0 in. (right).
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Tunnel Runs Reference Run M∞ α β Altitude, h

553-578 #580 1.6 -0.27° 0.17° 20.62 in.
195-219 #221 1.6 -0.29° 0.17° 20.59 in.

Table 1. Nominal tunnel conditions, run numbers and reference signatures used in Seeb-ALR
comparison at h=21.2 in.

frequencies in the pressure profiles, the overall levels of the main compression and expansions are essentially
constant from adapt cycles 6 (789 k cells) through 9 (16.6 M cells). Note in particular that the strength of
the initial peak, the pressure through the flat-top region, and the profile of the main expansion do not di↵er
substantially despite a 20-fold increase in cell count over the range of these solutions.

A.4. Seeb-ALR: Data Comparisons

Figures 8 and 9 show comparisons of the mesh-converged pressure signatures with both predictions based
on linear theory and experimental measurement. Experimental data are only available for the signature
at h = 21.2 in. and both figures focus on this location. In Ref. [38], Figure 18 showed the pressure profile
at this location as predicted by a simulation using an in-house analysis tool based on linear theory. That
simulation used the same CAD geometry as was used in our current study. Figure 8 overplots the results
from that analysis with the mesh converged pressure signature from our inviscid simulations. Agreement
between Lockheed’s linear analysis and our inviscid Cartesian method is remarkably good. Not only do the
flat-top overpressure (near 2  x  10) and main expansions (near 11  x  17) agree both in shape and
magnitude, but much of the high frequency content is also well represented. The slight discrepancy in the
magnitude of the initial shock is most likely a shortcoming of the linear theory where the geometry’s slightly
blunted nose creates a small detached bow-shock accompanied by non-linear flow physics in this Mach 1.6
free stream. The second peak near the front of the signal stems from the inflection point on the geometry
noted at the end of §III.A.1 and shown in detail in Figure 4(a).

Figure 9 presents a comparison of the computed pressure signature with the most relevant tunnel data
available. Reference run signatures #580 and #221 correspond to run series 553-578 and 195-219 respec-
tively.38,41 Measured data for each set of runs were processed using the spatial and temporal averaging
method from Refs. [35] and [36] to produce the mean and standard deviation data for each reference signa-
ture. Table 1 gives nominal conditions for these two composite signatures. In both cases, M1 = 1.6 and
the angle of attack was slightly negative, ↵ ⇡ �0.3� and the signatures were measured at a height of around
20.6 in. Data showing these two reference signatures are shown in red and orange in Figure 9. The grey
envelope indicates the 1� standard deviation of the aggregated signatures.

Comparison of the adaptive simulations with the experimental measurement is excellent through the
initial compression and the major high-frequency peaks settling into the flat-top pressure along the forebody.

 
 

The other “javelin” axisymmetric model was shaped to match the N+2 target signature, which was 
similar to the Low Boom model of the LM3 Test, and titled “OptSig”. This OptSig model used a target 
signature shape that was discovered and developed initially from the N+3 Supersonic Systems Studies 
program. The discrete component of (even blended) practical airplane shapes results in multi-shock 
signatures. But multi-shock signatures approximating a ramp shape signature can be similarly quiet once 
shock rounding is applied. A multi-shock signature shape optimization was run to find the shape that 
yields minimum vehicle length for the low boom loudness desired. Length is minimized as a surrogate for 
vehicle weight and thereby/performance. The optimum signature shape was used as a design target for the 
Low Boom configuration design in Task 3.3 and tested in the LM3 Test. For the LM1 Test, the OptSig 
model created a signature representative of the LM Low Boom configuration, and the new Blade Rail was 
used to try to measure its signature with enough precision so the propagated ground signature loudness 
would yield repeatable loudness from repeated measurements. 

The weight of the current N+2 vehicle, 354,000 lb mass take-off weight (MTOW), was used for both 
the SEEB-ALR and OptSig models. For the axisymmetric models, all of the equivalent area is represented 
with volume (no lift). So the nose of the OptSig model is very similar to the nose of the Low Boom 
vehicle; however, once the wing starts on the Low Boom vehicle—its fuselage cross-section area remains 
constant through the cabin. The SEEB-ALR final area is zero, while the OptSig model has to simulate the 
lift with its volume and ends with a non-zero cross-section proportional to its weight (and adjusted by the 
altitude for which it is intended). This ending area is carried back with a constant section for 
approximately one foot to allow the complete recompression to ambient to be simulated. The overall 
OptSig model length was made to be 29.25 in. to match the NASA LBWT model, allowing similar 
location variations in the tunnel. The SEEB-ALR model was made to initially match a 230 ft long SEEB 
distribution with another 15 ft added to accommodate adding ALR while maintaining close similarity to a 
non-ALR baseline SEEB distribution shown in Figure 16. The OptSig model was kept at 230 ft in length 
similar to the Low Boom configuration.   
  

NASA/CR—2013-217820 22
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0
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h = 21.2

Cart3D - Adapt09
LM Linear Theory

Figure 8. Overplot of pressure signature at
h = 21.2 in. with predictions from linear theory
(reprinted from Ref. [38], Fig.18.) using the same
CAD descriptions of the geometry. M1 = 1.6,
↵ = 0�.
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Figure 9. Comparison with tunnel measurements.
Tunnel data used spatial and temporal averaging.
1� standard deviation of measurements shown.35

Data from Ref. [41]. M1 = 1.6, ↵ = 0�.
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Some discrepancy is present through the main expansion where the simulation falls near the lower edge of
the 1� envelope. This feature emanates from the curvature of the shoulder of the geometry shown in
Figure 4b. In this region, the inviscid simulations agree closely with not only Lockheed’s linear method, but
also with published calculations done with Navier-Stokes (laminar and turbulent) methods.36,38,41 Given
the degree of mesh convergence, and the consistency of the simulation results across this spectrum of physical
models, we undertook a detailed comparison of the CAD model with the actual Seeb-ALR test article. Hand
measurements using a digital caliper and a makeshift jig confirmed the model’s fidelity to within measurement
accuracy (± 0.002 in).b

A more likely source of this discrepancy is interaction with the pressure rail. Ref. [35] shows simulations
of the Seeb-ALR model with the pressure rail mounted in the tunnel. When the model was positioned toward
the front of the rail, the predicted signatures show a distortion of the main expansion due to interaction
with the rail very similar to the discrepancy seen in Figure 9 (see Fig. 10 in Ref. [35]). The model position
and h/L in that analysis was within a few inches of this case, and the predicted distortion in the expansion
is very similar. Note that Ref. [38] reports similar behavior in simulations of the “OptSig” model which was
tested along with the Seeb-ALR and also mounted near the front of the pressure rail.

Simulation results on the 2.01 M cell mesh shown in Figure 5 were submitted to the workshop. This case
was run on a 2011-era laptop with four Xeon i7 cores. The total memory used was under 3.6 GB. Total
wall-clock time including initial mesh generation, all adaptation cycles and flow and adjoint solution time
was about 1 hour (61 min.) using all four hardware cores.

B. Case 2 – 69

�
Delta-Wing-Body (DWB)

Originally identified as “Model 4” in the 1973 wind tunnel study by Hunton and Hicks et al.,34 the delta-
wing-body shown in Figure 10 is the simplest winged configuration considered in the workshop. The figure
shows perspective renderings as well as planform, side and sectional views of this geometry. The model is an
analytically defined tangent-ogive-cylinder on a sharp delta-wing with a 5% thick diamond cross section. This
geometry has been the subject of numerous numerical studies4,42,43 and was also one of the configurations
studied by the NASA Fundamental Aeronautics workshop in 2008.20 Simulations for the present workshop
were conducted at M1= 1.7 and ↵ = 0�.

B.1. DWB: Geometry

In October 2012, the DWB model was fitted with a new sting and re-tested in the NASA Ames 9⇥ 7 ft.
Supersonic Wind Tunnel using a newly developed pressure rail for signature measurement.c,35 Figure 10
shows the front portion of the new sting and its attachment at the model’s base. At NASA’s earlier workshop

bRef. [38] gives the claimed accuracy of the the CAD description as ⇠0.0003 in.
cThis test was entry T97-0251 in the Ames Unitary Plan facility, Oct. 2012.

c 

c/2

t t/2

t/c = 0.05
6.90 in

6.41 in

3.23 in

1.36 in69°

Figure 10. Planform, side and perspective renderings of the delta-wing-body from NASA TN-D 716034 used
for workshop case 2. The model is shown with the sting fitted for the Ames 9 ⇥ 7 ft. Unitary Plan Supersonic
Tunnel tests in 2012.

8 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 M

ic
ha

el
 A

fto
sm

is 
on

 Ja
nu

ar
y 

13
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
14

-0
55

8 



Φ = 0°  30° Φ = 90° 60°

15.9 M cells 15.3 M cells

x
y
z xz

y

Figure 11. Case 2: Adapted Cartesian mesh and solution isobars for 69� delta-wing-body at M1 = 1.7
and ↵ = 0�. Pressures were extracted at o↵-body distances of h={0.5, 21.2, 24.8, 31.8} in. (Left) Mesh for
� = {0�, 30�}, with 15.9M cells. (Right) Mesh for � = {60�, 90�}, with 15.3M cells.

in 2008, the geometries used by various simulation codes di↵ered in their treatment of the sting and base
leading to slight di↵erences in the results at particular h/L distances for certain lift coe�cients.20 By
providing a unified description of the geometry, the current workshop directly addresses this ambiguity.

From nose to base, the fuselage of the model measures 6.90 in. long. The delta wing reaches a maximum
span of 2.72 in. and the leading edge is swept 69� with a 5% thick diamond cross section as shown in the inset
of Figure 10. The workshop provided the model and sting geometry through structured and unstructured
surface meshes as well as solid models in both Parasolid and STEP formats. The surface triangulations were
derived from the discrete models provided,d however the model was reflected about the symmetry plane,
and the sting was extended about 5 body lengths downstream. In all, the triangulation had ⇠226 k triangles
with reasonably good curvature alignment, except at the very tip of the nose.

B.2. DWB: Meshing

The wind tunnel measurements were conducted at various heights and roll angles to obtain on-track and o↵-
track signatures up to 90�. The workshop called for pressure signatures at h = {0.5, 21.2, 24.8, 31.8} inches.
When normalized by the body length, these correspond to h/L= {0.07, 3.07, 3.60, 4.61}, respectively. On
track signatures were required at 0.5 in. and 21.2 in. and o↵-track data was requested at 24.8 in. and 31.8 in.
for azimuths of � = {0�, 30�, 60�, 90�}. Given that these o↵-track extractions correspond to non-dimensional
heights of up to h/L= 4.6, obtaining accurate pressures at relatively large distances suggests substantially
higher meshing requirements than the Seeb-ALR example.

While the mesh rotation and stretching used in §III.A on the axisymmetric body is representative of the
approach used for practical boom calculations, these meshing techniques are clearly designed to promote
wave propagation along dominant characteristics of the flow. In a 2011 study,44 we quantified the o↵-track
meshing requirements on rotated and stretched meshes and found that achieving comparable accuracy at
an azimuth of � = 45� required ⇠30% more resolution than on-track sensors at the same distance with
cosine-like variation in between. For practical boom calculations, the maximum relevant azimuth is limited
by the signal cut-o↵ angle of the atmosphere, which is typically between 30� and 50�. Nevertheless, the 2011
study does suggest that it is more cost e↵ective to run the extreme workshop azimuths with the mesh rotated
in yaw rather than in pitch. This approach mimics what is done experimentally – where the model roll is
used to obtain data at various azimuths. Ultimately, two simulations were performed, one with the mesh
rotated and stretched in the pitch-plane (for � = 0�, 30�) and one with the mesh yawed (for � = 60�, 90�).

Figure 11 shows three-quarter views of the final adaptively refined meshes for simulations at M1= 1.7
dFile “delta sting split s100.tri” provided on the workshop ftp server ftp://lbpw-ftp.larc.nasa.gov.
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Figure 12. Mesh convergence for 69� DWB case. (Left) Convergence of the functional and adjoint correction.
(Right) Convergence of the adjoint-based error estimate and actual update to the functional, |�J |.

and ↵ = 0� with locations of the pressure sensors identified. Mesh adaptation was driven by a composite
functional comprised of the weighted sum of the pressure signals on each sensor following eq. (2). Contri-
butions from each sensor were weighted by h/L, and o↵-track sensors were weighted 2⇥ greater than their
on-track counterparts. In both cases, the initial mesh size started at ⇠103 k cells and grew to ⇠15 M cells
after 9 cycles of adjoint-driven adaptive refinement. The figure includes symmetry plane and crossflow cuts
through the mesh, with the location of sensors identified. Mesh adaptation in Figure 11 generally tracks the
main pressure disturbances along conic-sections that propagate toward the o↵-body sensors.

B.3. DWB: Mesh Convergence

Workshop results for the 69� delta-wing-body were submitted for the meshes shown in Figure 11 with
15 M cells after 9 cycles of adaptive refinement. As with the Seeb-ALR case, two additional refinements
were performed to establish mesh convergence. Figure 12 shows results for convergence of the adaptation
functional (left) and convergence of the adjoint-based error estimates (right). Adaptation cycles 9, 10 & 11
are labeled. As before, the functional is an integral of pressure along the sensors, and this plot shows that
the pressure signatures are becoming mesh independent with increasing resolution. The corrected functional
(green circles) again leads the computed functional by approximately one mesh, and vanishes rapidly as the
mesh is refined. The frame at the right of Figure 12 shows that the estimated error-bound is also well-
behaved and is everywhere conservative when compared with the actual |�J |. As before, convergence is
essentially linear on this log–log plot despite the strong non-linearities in this Mach 1.7 flow. This smooth
error convergence provides a high degree of confidence in the extracted pressure signals.

Figure 13 presents further evidence of mesh convergence through direct comparison of the evolving
pressure signal on-track (� = 0�) at h = 0.5 in. and h = 21.2 in. over the final four adaptation cycles.
Mesh convergence at these locations is worth examining since experimental data does not exist in these
neighborhoods at comparable conditions.e Even the coarsest result shows good convergence and only the
high frequency features near the aft portion of the signal distinguish the finer meshes. The frame at the
right of Figure 13 shows mesh convergence of the o↵-track signature at h = 24.8 in., � = 60�.

eThe closest data at h = 21.2 in. is at ↵ = 0.7� and no data was taken at h = 0.5 in.41

2 4 6 8 10 12 14
Distance Along Sensor (inches)

-0.2

-0.1

0

0.1

0.2

Δ
P/
P in

f

Adapt 11
Adapt 10
Adapt 09
Adapt 08

Φ = 0o

h = 0.50 in.

2 4 6 8 10 12 14
Distance Along Sensor (inches)

-0.02

-0.01

0

0.01

Δ
P/
P in

f

Adapt 11
Adapt 10
Adapt 09
Adapt 08

Φ = 0o

h = 21.2 in.

2 4 6 8 10 12 14
Distance Along Sensor (inches)

-0.02

-0.01

0

0.01

Δ
P/
P in

f

Adapt 11
Adapt 10
Adapt 09
Adapt 08

Φ = 60o

h = 24.8 in.

On-track On-track Off-track

Figure 13. Convergence of the o↵-body pressure signature with mesh refinement for 69� delta-wing-body case
near the body at (left) h = 0.50 in., � = 0�, (center) in the mid-field h = 21.2 in., � = 0�, (right) mid-field,
o↵-track h = 24.8 in. � = 60�.
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5598-5637 #5638 1.7 0.24 0.16° 24.86 in.
5530-5549 #5550 1.7 -0.20 29.97° 24.75 in.
5551-5570 #5571 1.7 -0.18 60.06° 24.75 in.
5572-5591 #5592 1.7 -0.18 89.87° 24.69 in.
5240-5274 #5275 1.7 -0.06 0.60° 31.64 in.
5284-5301 #5275 1.7 -0.17 29.94° 31.74 in.
5310-5327 #5328 1.7 -0.22 59.74° 31.56 in.
5336-5354 #5354 1.7 -0.20 89.96° 31.61 in.

Tunnel Runs Reference 
Run M∞ α Φ Altitude, h

Table 2. Nominal tunnel conditions, run numbers and reference signatures used for 69� DWB
pressure signature at h=24.8 & 31.8 in.

B.4. DWB: Data Comparisons

While relevant experimental data was unavailable for the two signals at 0.5 & 21.2 in., on-condition data
was recently published at both h = 24.8 in. and h = 31.8 in. for the full range of all azimuths considered in
the workshop, � = {0�, 30�, 60�, 90�}.41,45 Table 2 details the nominal tunnel conditions, run numbers
and reference signatures used for the experimental data. In all cases, the angles are within 0.25� and the
pressure rail was within 0.25 in. of the sensor locations used in the simulations. Figures 14 and 15 show direct
comparison of the pressure signatures at h = 24.8 in. and h = 31.8 in. with the experimental data. Since these
plots maintain consistent axes, comparing at the two heights gives a sense of the weakening of the signal as
it propagates away from the body.

Agreement between simulation and experiment is good across all locations, and comparisons with the
RANS results found in Refs. [41] and [45] are excellent – even at the most extreme azimuths. As the
signal moves o↵-track from the centerline, there is an interesting trend seen in both the experiment and
simulation. On-track, the simulation catches a very tight expansion mid-way up the final re-compression
(see Fig. 14: � = 0�, ⇠11.8 in.). RANS simulations with NASA’s OVERFLOW solver showed the same
feature,45 and it first becomes noticeable in the experimental data at � = 30�. As the azimuth angle
increases, this feature lengthens substantially until it dominates the re-compression at � = 60� and 90�.

As with the Seeb data presented earlier, the experimental data is a composite obtained using spatial
and temporal averaging of the data along the pressure rail and then removing the background signal of the
tunnel (the “reference signature”). References [35, 36, 41] and [45] discuss the development and application
of the measurement techniques used to obtain the experimental pressure signatures. These authors note
the many challenges associated with accurately measuring the weak disturbances from small models in large
supersonic tunnels. Extracting clean experimental data from this low signal-to-noise environment requires
substantial post-processing. Some evidence of the degree of measurement scatter is shown by the grey
shaded regions in the pressure signature plots which show the 1� standard deviation of the experimental
data over the averaging window. In the eight comparison plots shown in Figures 14 and 15, the simulation
data consistently matches the experiment very well. However, inspection of any one of these reveals that
the simulation data exhibits peaks that are both higher and sharper than the corresponding measurements.
These same characteristics were shown for simulations with NASA’s USM3D code in Refs. [41] and [45].
Additionally, the experimental data consistently shows compressions that are decidedly less steep than the
crisp shocks found in the CFD signatures. In their development of the measurement techniques, Morgenstern,
Cli↵ and Durson cite numerous reasons for the rounding and relaxing of the experimental data.35,36,41,45
Most notably, tunnel turbulence and other unsteadiness contribute to high frequency model vibration which
smoothes the pressure profile, aggressively eroding sharp peaks. These e↵ects become more pronounced as
the propagation distance increases. Other leading contributors are humidity in the tunnel, the location of
the model with respect to the rail and the post-processing techniques themselves. In Ref. [36] Morgenstern
states bluntly A high resolution CFD solution should be more “peaked” than wind tunnel measurements and

[would] require similar displacement vibration rounding for spikes to match measurements. Cli↵ noted that
the degree of rounding of the experimental signatures due to model vibration increased with h/L.41,45 On
this small model, the 24.8 in. and 31.8 in. heights correspond to normalized propagation distances of 3.6 and
4.6 body lengths. These are 3 to 4 times larger than the h/L = 1.2 of the Seeb-ALR signature in Figure 9,
which could result in significantly more rounding of the data.
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Figure 14. On-track and o↵-track comparison of pressure signatures with tunnel measurements at h=24.8 in
for azimuths � = {0�, 30�, 60�, 90�}. Tunnel data used spatial and temporal averaging. 1� standard deviation
of measurements shown.35 Data from Ref. [41]. M1 = 1.7, ↵ = 0�.
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Figure 15. On-track and o↵-track comparison of pressure signatures with tunnel measurements at h=31.8 in
for azimuths � = {0�, 30�, 60�, 90�}. Tunnel data used spatial and temporal averaging. 1� standard deviation
of measurements shown.35 Data from Ref. [41]. M1 = 1.7, ↵ = 0�.
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Lref = 22.396 in
Sref = 33.178 in2

b/2 = 4.027 in
α lbpw1 = 2.1°
α cruise = 2.3°
CL cruise = 0.142

Figure 16. Front, side and three-quarter views of the Lockheed Martin model 1021 tri-jet geometry with
blade-sting as tested in the NASA Ames 9⇥7 ft. Supersonic Tunnel. Workshop cases were at M1 = 1.6,
↵ = 2.1�

Simulation results on the meshes shown in Figures 11 were submitted to the workshop. This case was
run on a dual-socket system with a 20 hardware cores.f Each simulation used under 36 GB of total memory,
and the total wall-clock time including initial mesh generation, adaptation, flow and adjoint solution time
was just under one hour.

C. Case 3 – Lockheed Martin 1021 Model (LM 1021)

The final case considered in the workshop was an optional study of a complete aircraft configuration designed
for low sonic boom. This configuration was designed by Lockheed Martin Corp. and was tested jointly with
NASA in the same tunnel as the previous two cases. The LM 1021 design was developed during Phase I
of Fundamental Aeronautics’ study of next generation low-boom designs.37 Figure 16 shows an overview of
the configuration through front, side and three-quarter views of the complete geometry. To permit accurate
signature measurement, the model used a blade-sting attached atop the fuselage for mounting in the tunnel.
Wind tunnel testing was conducted in October 2011, April 2012 and October 2012. The workshop simulations
were all computed at Mach 1.6 and 2.1� angle of attack.

C.1. LM1021: Geometry

The table inset in Figure 16 gives key reference quantities for the 1/125th (0.8%) scale tunnel model. With
a reference length of 22.4 in., LM1021 is almost four times larger than the 69� delta wing model studied
in the previous section. Despite the model’s overall size, the V-tail, flaps and three flow-through nacelles
introduce extremely fine scales, and many of the features near the aft-end had to be manufactured thicker
on the tunnel model than in the full-scale design.

The workshop provided the model and sting geometry in both STEP and IGES formats. Additionally,
watertight surface triangulations of the half-body were provided in both CGNS and Cart3D formats. The
surface triangulations rendered in Figure 16 were derived from these discrete models,g however the model
was mirrored about the symmetry plane and the sting was extended about 2.5 body lengths downstream. In
total, the surface triangulation had 398 k triangles. This tessellation had relatively poor curvature alignment
along the wing leading edges, the wing-body juncture, on the nacelles and near the nose; some artifacts of
this poor alignment are visible in Figure 16.

f2⇥ Intel Xeon E5-2680v2, with 10 cores each.
gFile “LM 1021mody.tri” provided on the workshop ftp server ftp://lbpw-ftp.larc.nasa.gov.
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C.2. LM1021: Meshing

The tunnel measurements were taken at heights varying from 20 to 70 in. and roll angles from 0� to 48�
to obtain on and o↵-track signatures.45 Surveys up to h = 42 in. were conducted with the rail mounted
in the forward position of the test section which generally provides better data quality.36,41 The workshop
requested pressure signatures at h = {1.64, 2.65, 3.50, 5.83, 8.39} ft. When normalized by the reference
length, these correspond to distances of h/L= {0.88, 1.42, 1.88, 3.13, 4.50}. Complete signature carpets
were requested for each h/L covering the entire range from directly under the model (� = 0�) to directly
overhead (� = 180�). We constructed these carpets using an array of pressure sensors at each h/L with
azimuthal spacing of 10�. These sensor arrays started at � = 0� and extended to a maximm o↵-track angle
of 50�.h This array of 30 sensors was su�cient to provide pressure carpets from on-track to signal cuto↵ at
each of the five h/L’s and encompassed the full range of experimental data. Accurately propagating signals
from this highly detailed configuration over long distances for a broad range of azimuth angles portends
substantially higher meshing requirements than in either of the preceding examples.

As in the earlier examples, the squared-form of the pressure sensors in eq.(2) was used to drive mesh
adaptation. Contributions from each sensor were weighted for both h/L and azimuth angle to account for
the signals weakening with propagation distance and o↵-track meshing e�ciency. The net functional was a
combination of the weighted contributions from the M sensors in the array:

J =
MX

i=1

wiJi with wi =
hi

Lref
(1 +

4
p

2
sin�i) (3)

These weights were developed empirically with a goal of roughly equilibrating the contributions from each
sensor to the net functional. Also note that the scheme in eq.(3) yields similar weights as those described
for the 69� DWB case presented earlier, and has been used in numerous internal investigations – including
simulations of the full-scale LM1021 configuration.

Figures 17 and 18 present symmetry plane and three-quarter views of both the sensor array and the
adapted Cartesian mesh. Sensors are colored by h/L and the mesh is highlighted by local pressure to show

hNo attempt was made to extend these carpets above the horizon since such data is irrelevant for boom signatures and would
be dominated by the mounting hardware in this particular case.

h = 1.64 ft
h = 2.65 ft

h = 3.50 ft

h = 5.83 ft

h = 8.39 ft

Isobars57 M cells

Figure 17. Case 3: Symmetry plane Cartesian mesh and isobars for Lockheed Martin tri-jet LM1021 at
M1 =1.6, ↵ =2.1�. Pressures were extracted at o↵-body distances of h={1.64, 2.65, 3.50, 5.83, 8.39} feet
away from body. Mesh shown contains 57M cells resulting from 10 cycles of adaptive refinement.
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Figure 18. Case 3: Symmetry plane and cross-flow slices showing adapted Cartesian mesh and iso-
bars for Lockheed Martin LM1021 configuration at M1 =1.6, ↵ =2.1�. Pressure sensors shown at
� = {0�,10�,20�,30�,40�,50�} at distances of h={1.64, 2.65, 3.50, 5.83, 8.39} feet from the body. Mesh shown
contains 57M cells.

the dominant wave propagation driving the adaptation. The initial mesh had ⇠51 k cells and the mesh
shown contains 57 M cells after 10 cycles of adaptive refinement. As in the simpler examples presented
earlier, refinement regions in Figures 17 & 18 generally track the main pressure disturbances along conic-
sections that propagate toward the o↵-body sensors. Adaptation is also evident surrounding the sensors
themselves in both the symmetry plane and crossflow cuts.

C.3. LM1021: Mesh Convergence

Results for the LM 1021 configuration were submitted for the meshes shown in Figures 17 and 18 with
57 M cells and 10 cycles of adaptive refinement. This relatively large case required approximately 80GB of
memory to run. Due to the larger mesh size, only one additional refinement was performed to establish mesh
convergence. Figure 19 shows results for convergence of the adaptation functional (left) and convergence
of the adjoint-based error estimates (right). Adaptation cycles 8 – 11 are labeled. As discussed earlier,
convergence of the functional is a direct indication of mesh independence of the pressure signatures over the
entire sensor array. Over the last 4 adaptation cycles, the corrected functional (green circles) convincingly
leads the computed functional by approximately one adaptation cycle, and the correction itself vanishes
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Figure 19. Mesh convergence for LM1021 case. (Left) Convergence of the functional and adjoint correction.
(Right) Convergence of the adjoint-based error estimate and actual update to the functional, |�J |.
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rapidly as the mesh is refined. The frame at the right of Figure 19 shows that the estimated error-bound
is also well-behaved and is everywhere conservative when compared with the actual |�J |. In this case,
the actual updates are about one order of magnitude smaller than the estimate of the error-bound. The
linearly decreasing error-estimate is particularly striking when considering the level of geometric and flow
field complexity in this example. This smooth error convergence gives confidence not only in the extracted
pressure signals, but also in the e�cacy of the adjoint-driven adaptation procedure. Detailed signature
convergence with mesh refinement behaves similarly to the earlier examples (cf. Figs. 7 & 13) and is not
presented.

C.4. LM1021: Data Comparisons and Analysis

Figure 20 shows carpet plots of the pressure signatures reconstructed for each of the five values of h/L. These
carpets were constructed by collecting the pressure signatures extracted at each h/L and tessellating each
group in x – � space. This view o↵ers a more complete understanding of the signal evolution. The figure
presents these carpets from three vantage points. At the left, the perspective three-quarter view shows the
scale of the actual propagation with respect to the size of the model – which is in the extreme upper left
corner. Since these carpets were extracted roughly along characteristics of the Mach 1.6 flow, we can see
how features in the near-field evolve as the signal propagates. The center frame shows a top view, helping
to clarify the downstream extent of the propagation while o↵ering a better view of the variation of the
pressure footprint with o↵-track angle. At all h/L’s, the pressure signatures strengthen somewhat o↵-track.
In addition, since the entire footprint at any intermediate h/L is completely captured by the next, this view
gives insight into how the amplitude of the waves decreases as they spread away from the body. The frame
at the right shows a projection in the x – � plane which is particularly interesting. At larger distances,
the pressure field behaves as if it was generated by an equivalent slender body. The cross-flow direction
essentially decouples so that propagation along any particular azimuth is independent from all others. As a
result, unwrapping these carpets into x – � coordinates permits direct comparison of the signal’s evolution
along any particular o↵-track angle.

The symmetry plane isobars at the right of Figure 17 are helpful in tracing the source of the features
shown in the carpets of Figure 20. For example, the stripe of high pressure (red) at the back of the carpets
at h = 1.64, 2.65 & 3.5 ft. clearly emanates from the sting juncture and is not generated by the model
itself. More critically, we see that the main expansion (shown in blue/cyan in the middle and outboard of
each carpet) deepens significantly at o↵-track angles greater than about 20� – despite being well controlled
directly on-track (� = 0�). This strong expansion at moderate azimuth angles suggests the possibility of
noisy o↵-track ground booms and must be examined in detail. This strong expansion persists at large h/L.

Reference [45] includes a table of all available tunnel runs relevant to the LM1021 case considered in
the workshop. Figures 21 & 22 show pressure signatures from the four runs which most closely match the
present conditions and signature locations. Figure 21 shows on-track (� = 0�) comparisons near h = 1.64 and
2.65 ft., while Figure 22 shows o↵-track data near � = 20� and � = 50�. Both o↵-track measurements were
taken at h = 1.73 ft., which is only about an inch farther away than the computations at 1.64 ft. Despite
the slight mismatch in conditions and extraction locations, there is reasonably good agreement with the
experiment for all four signatures. The comparison at the right of Figure 22 possibly shows the closest

8.39 ft

2.65 ft

5.83 ft

3.50 ft

1.64 ft
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Figure 20. Near and mid-field pressure carpets for � = 0��50� for LM 1021 configuration extracted at h={1.64,
2.65, 3.50, 5.83, 8.39} feet.
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Figure 21. Comparison of on-track pressure signatures with tunnel measurements at h=1.64 & 2.65 ft. Sim-
ulation results at M1 =1.6, ↵ = 2.1�. Experimental results with ↵ = 2.1� at h=1.73 ft. and ↵ = 2.3� at
h=2.61 ft.
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Figure 22. Comparison of o↵-track pressure signatures at � = 20�&50� with tunnel measurements. Simulation
results at M1 =1.6, ↵ = 2.1�, at h=1.64 ft. Experimental data at ↵ = 2.3�, h=1.73 ft. and � = 20�&47�.

agreement and is also the most striking. Experimental data for this case was taken at ↵ = 2.3� and � = 47�
while the simulation was at a slightly lower angle of attack (↵ = 2.1�) and was extracted at � = 50�. This
signature is dominated by a deep expansion and relates directly to the observations about o↵-track behavior
in the preceding paragraph. This profile is a cut through the first carpet (h= 1.64 ft.) in Figure 20 near the
outboard edge. It quantifies the rapid transition from overpressure to deep suction discussed above which is
notably stronger than even the highest peak overpressure seen at this distance; cf. left frame in Figure 21.
The pressure carpets indicate that this expansion becomes prominent around � = 20� and indeed, the plot at
the left of Figure 22 shows the beginning of this feature at a distance of around 20 in. along the sensor. This
feature would need to be propagated to the ground from one of the mid-field h/L’s to determine o↵-track
loudness.

While agreement with measurement at all four locations in Figures 21 and 22 is reasonably good, there are
some notable discrepancies through the main expansion (x ⇡ 19 in.). Given the precision of our predictions
for the Seeb-ALR and the 69� delta-wing case, these di↵erences merit closer inspection. Figure 21 shows
the on-track signatures at h = 1.64 and 2.65 ft. In these profiles, the peak overpressure predicted by the
simulations is slightly delayed as compared to the experiment. In addition, the simulations show a secondary
peak, in the middle of the main expansion at x= 19 in., which di↵ers from the experiment and persists out to
about � = 20�. Since these results are mesh converged, its worth investigating the source of this secondary
peak.

The adjoint field identifies regions of the domain responsible for particular outputs. Therefore, the
adjoint solver is an excellent tool for tracing this secondary peak to its precise origin. Figure 23 outlines this
investigation. We re-instrumented the mesh shown in Figure 17 using a line sensor localized to the main
expansion: from about x= 18 in. to x= 20 in. We then solved the adjoint against the new functional. The
resulting adjoint field highlights the particular regions of the flow and geometry responsible for just this
portion of the signal. Figure 23 shows the sensor location, a view of the adjoint solution and a close-up of
the geometry under wing colored by the density adjoint. The close-up shows that this portion of the main
expansion is most strongly influenced by details of the underwing pressure over the front-half of the nacelle
(the dark blue stripe under the wing and extending onto the nacelle itself).
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Figure 23. Adjoint investigation highlighting the region of the surface responsible for the pressure signature
through the main expansion. Isobars of density adjoint. M1 =1.6, ↵ = 2.1�, at � = 0�.

With the source of this feature identified underwing and on the forward half of the nacelle, we can now
examine local features in the pressure field and search for di↵erences between the simulation and experiment.
The tunnel tests were conducted at a Reynolds number of only 2.55 M/ft. This is approximately two orders
of magnitude lower than that of the full-scale vehicle, and the low tunnel Reynolds number was a persistent
concern in the test reports.36,41 Figure 24 shows the consequences of this low Reynolds number in the
underwing region highlighted by the adjoint. The figure shows Mach and pressure contours from viscous
simulations using NASA’s USM3D solver and contrasts them with the inviscid simulation.i At the tunnel
Reynolds number, the thick incoming boundary layer extends nearly the full height of the pylon. The Mach
contours show that this viscous layer essentially fills the entire space between the wing and nacelle. As a
result, the shock from the upper nacelle lip interacts strongly with this thick layer and the resulting footprint
on the underwing pressure moves forward and smears out substantially. In the inviscid simulations, the upper
nacelle lip throws an oblique shock that strikes the wing downstream of the inlet and reflects back down
toward the sensor. There is a secondary reflection between the nacelle and lower wing surface and a strong
pressure rise at the pylon leading edge. These two over-pressures propagate toward the sensor as indicated
by the dashed arrows in frame (c) of Figure 24. The aft shift in the footprint of the nacelle shock and
the secondary shock from the reflection and pylon directly account for the di↵erences seen in the on-track
pressure signatures in Figure 21. More recent simulations at flight Reynolds numbers show much closer
agreement between inviscid and viscous results since the underwing boundary-layer is much thinner at these
conditions.41

Simulation results on the 57 M cell mesh shown in Figures 17 & 18 were submitted to the workshop. This
case was run on the NAS Endeavour system with 96 Intel Xeon E5-460L cores. The total memory used was
under 80 GB. The total wall-clock time including initial mesh generation, all adaptation cycles and flow and
adjoint solution time was about 2 hours and 20 minutes.

iDetails of viscous simulations for this case with USM3D are presented in Ref. [45].

b)  Pressure (viscous)a)  Mach Number (viscous)

Thick incoming boundary-layer

c)  Pressure (inviscid)

Propagation 
direction

Figure 24. Comparison of the underwing region in viscous (RANS) at the wind tunnel Reynolds number
with inviscid modeling. Colormaps in frames (b) and (c) are similar but not identical. M1 =1.6, ↵ = 2.1�.
Re

x

=2.55M/ft.
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IV. Summary

This work presented simulation results for the First AIAA Sonic Boom Prediction Workshop using an
inviscid, embedded-boundary Cartesian mesh method. The simulations used adjoint-based error estimation
and adaptive meshing to automatically determine resolution required for accurate computations. Results
were presented for both the mandatory and optional workshop cases. These included the Seeb-ALR body of
revolution, the 69� delta-wing-body and a complete model of the Lockheed low-boom LM 1021 configuration
with V-tail, three flow-through nacelles and blade-sting. In each case, we presented mesh refinement studies
showing convergence of the output functional, the remaining discretization error and convergence of the
pressure signals at representative sensor locations. Moreover, very good convergence of the adjoint-correction,
the remaining error and the functional update were observed for all cases. Direct comparison with wind-
tunnel data from the NASA Ames 9⇥ 7 ft. Supersonic Wind Tunnel provided validation of all numerical
simulations. Results for all cases showed very good agreement with the available experimental data and
linear theory (where appropriate).

These examples provided an opportunity to discuss various aspects of practical low-boom signature pre-
diction. We addressed issues surrounding accurate prediction of extreme o↵-track pressure signatures, such
as, appropriately weighting the contributions of o↵-track pressure sensors to the net adaptation functional
and yawing the computational mesh. A heuristic weighting of pressure sensors was presented which accounts
for both the reduction in signal strength with propagation distance and increased resolution requirements
o↵-track. This weighting is designed to balance contributions to the net output functional from many indi-
vidual pressure sensors. We demonstrated its e↵ectiveness on an array of 30 sensors in simulations of the
LM 1021 test case. This work also demonstrated a powerful technique for using the adjoint solver to focus
on specific portions of the near-field pressure signature and tracing these directly to precise regions of the
surface geometry and near-body flow. This technique allowed us to link details of the main expansion in
the pressure signature to the very strong shock/boundary-layer interaction that occurs near the underwing
nacelles due to the low Reynolds numbers of the experiment.

More broadly, this study showed the utility of the adaptive Cartesian mesh solver for predicting near- and
mid-field pressure signatures of low-boom configurations at modest computational cost. Wall-clock times
for these fully-automated solutions ranged from about an hour on a quad-core laptop, for the Seeb-ALR
example, to ⇠2.5 hours on 96 cores for the LM1021 case.
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